amzlist Documentation
Release 0.1

John Keyes

April 26, 2012

CONTENTS

1 amzlist 3

1.1 amzlist Package e 3
2 Getting the code 5
3 Running the Tests 7
4 Continuous Integration 9
5 API Documentation 11

Python Module Index 13

amzlist Documentation, Release 0.1

A linked list implementation by John Keyes.

CONTENTS 1

amzlist Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

AMZLIST

1.1 amzlist Package

1.1.1 amzlist Package

class amzlist.__init__ .LinkedList (strict=None)
Bases: object
A LinkedList implementation.

append (node)
Inserts node at the tail of the LinkedList.

as_1list ()
Returns this LinkedList as a list of Nodes.

data
Returns the data for the first Node.

find (node, inc_prev=None)
Find the specified Node.

If the node parameter is a Node, and it has data and a next Node then the first Node with encountered that
has the same data and next attribute values will match.

If the node parameter is a value other than a Node or a Node with just a data attribute value, then the first
node encountered with the same data attribute value will match.

If inc_prev is True, this method returns the node and it’s previous node in a tuple, otherwise it returns the
node.

This method returns None if the node cannot be found.

insert (node, after)
Inserts node and makes after.next refer to it.

last_node
Returns the last Node.

next
Returns the next Node.

pop ()
Returns the Node from the head, and removes it.

prepend (node)
Inserts node at the head of the LinkedList.

amzlist Documentation, Release 0.1

push (node)
Prepends a Node to the head.

remove (node)
Remove the specified node.

If the node parameter is a Node, and it has data and a next Node then the first Node with encountered that
has the same data and next attribute values will be removed.

If the node parameter is a value other than a Node or a Node with just a data attribute value, then the first
node encountered with the same data attribute is removed.

reverse_iterative ()
Returns a new LinkedList with the Nodes in reverse order.

This method uses an iterative approach.

reverse_recursive (node=None, new_list=None)
Returns a new LinkedList with the Nodes in reverse order.

This method uses a recursive approach.

class amzlist.__init__ .Node (data)
Bases: object

A Node is a simple object with two attributes, next and data.
data stores a value, and next holds a reference to another Node.

data = None
Data text

next = None
Next text

strict = False

4 Chapter 1. amzlist

CHAPTER
TWO

GETTING THE CODE

The simplest way is to clone the repository from GitHub:

git clone https://github.com/jkeyes/amzlist.git

Or you can download the repository in a ZIP file.

https://github.com/jkeyes/amzlist
https://github.com/jkeyes/amzlist/zipball/master

amzlist Documentation, Release 0.1

6 Chapter 2. Getting the code

CHAPTER
THREE

BASIC USAGE

You can prepend items to a linked list, which adds each new Node as the head of the list:

from amzlist import LinkedList

Inkd_list = LinkedList ()
Inkd_list.prepend("amazon.com")
Inkd_list.prepend("@")
Inkd_list.prepend (" jkeyes")

You can also append. Note this is much slower as we must traverse the entire list to find where to insert the node:

Inkd_list.append("Why would you use append?")

It’s also possible to insert a node after another node:

from amzlist import Node
n_color = Node ("Red")
n_answer = Node (42)

Inkd_list.prepend(n_color)
Inkd_list.insert (n_answer, n_color) # insert n_answer after n_color

To remove a node the remove method can be used:

Inkd_list.remove ("Red")

Alternatively you can use push and pop to add and remove nodes from the list:

Inkd_list.push("Item 1")
Inkd_list.push("Item 2")
node = 1lnkd_list.pop/()
node.data == "Item 2"

amzlist Documentation, Release 0.1

8 Chapter 3. Basic Usage

CHAPTER
FOUR

REVERSING

There are two methods to reverse the list, one uses an iterative approach and the other a recursive one:

rvsd_list = 1nkd_list.reverse_iterative ()
rvsd_list = 1lnkd_list.reverse_recursive ()

amzlist Documentation, Release 0.1

10 Chapter 4. Reversing

CHAPTER
FIVE

CYCLE DETECTION

If the LinkedList methods are used no cycles can be introduced. However, it is possible to introduct a cycle by directly
manipulating the nodes:

Inkd_list = LinkedList ()
node_john = Node (’ John’)
Inkd_list.prepend (node_john)
node_james = Node (' James’)
Inkd_list.prepend(node_james)
node__joe = Node (' Joe’)
Inkd_list.prepend(node_joe)

introduce a cycle

Joe—->James—>John->Jules—->John
node_jules = Node (’Jules’)
node_john.next = node_jules
node_jules.next = node_john

To prevent this you can create a strict LinkedList.

Inkd_list = LinkedList (strict=True)

node_jules.next = node_john
Raises ValueError

WARNING: this is an EXTREMELY costly feature, as it requires traversal of the list for each Node that is added to
the List (if the node being added has a value for next).

11

amzlist Documentation, Release 0.1

12 Chapter 5. Cycle Detection

CHAPTER
SIX

RUNNING THE TESTS

To run the testsuite you’ll need to setup the environment first:

cd amzlist

virtualenv venv

source venv/bin/activate

pip install -r requirements.txt

Then you can run the testsuite:

nosetests tests

You can also get a coverage report:

nosetests tests --with-coverage —--cover-package amzlist

13

amzlist Documentation, Release 0.1

14 Chapter 6. Running the Tests

CHAPTER
SEVEN

CONTINUOUS INTEGRATION

The testsuite has been run on Python 2.5, 2.6, 2.7 and 3.2 on Travis CI.

15

http://travis-ci.org/#!/jkeyes/amzlist

amzlist Documentation, Release 0.1

16 Chapter 7. Continuous Integration

CHAPTER
EIGHT

API DOCUMENTATION

Browse the API Documentation.

If you want to generate the documentation use the following commands:

cd docs
make html # docs will be generated in _build/html

17

amzlist Documentation, Release 0.1

18 Chapter 8. APl Documentation

PYTHON MODULE INDEX

19

	amzlist
	amzlist Package

	Getting the code
	Running the Tests
	Continuous Integration
	API Documentation
	Python Module Index

